Belkin, Mikhail, Partha Niyogi, and Vikas Sindhwani. 2006. “Manifold Regularization: A Geometric Framework for Learning from Labeled and Unlabeled Examples.” Journal of Machine Learning Research 7 (11).
Coifman, Ronald R, and Stéphane Lafon. 2006. “Diffusion Maps.” Applied and Computational Harmonic Analysis 21 (1): 5–30.
Coifman, Ronald R, Stephane Lafon, Ann B Lee, Mauro Maggioni, Boaz Nadler, Frederick Warner, and Steven W Zucker. 2005. “Geometric Diffusions as a Tool for Harmonic Analysis and Structure Definition of Data: Diffusion Maps.” Proceedings of the National Academy of Sciences 102 (21): 7426–31.
Crane, Keenan, Clarisse Weischedel, and Max Wardetzky. 2017. “The Heat Method for Distance Computation.” Communications of the ACM 60 (11): 90–99.
Gasteiger, Johannes, Stefan Weißenberger, and Stephan Günnemann. 2019. “Diffusion Improves Graph Learning.” Advances in Neural Information Processing Systems 32.
Haghverdi, Laleh, Florian Buettner, and Fabian J Theis. 2015. “Diffusion Maps for High-Dimensional Single-Cell Analysis of Differentiation Data.” Bioinformatics 31 (18): 2989–98.
Haghverdi, Laleh, Maren Büttner, F Alexander Wolf, Florian Buettner, and Fabian J Theis. 2016. “Diffusion Pseudotime Robustly Reconstructs Lineage Branching.” Nature Methods 13 (10): 845–48.
Klicpera, Johannes, Aleksandar Bojchevski, and Stephan Günnemann. 2019. “Combining Neural Networks with Personalized Pagerank for Classification on Graphs.” In International Conference on Learning Representations.
Nadler, Boaz, Stéphane Lafon, Ronald R Coifman, and Ioannis G Kevrekidis. 2006. “Diffusion Maps, Spectral Clustering and Reaction Coordinates of Dynamical Systems.” Applied and Computational Harmonic Analysis 21 (1): 113–27.
Roweis, Sam T, and Lawrence K Saul. 2000. “Nonlinear Dimensionality Reduction by Locally Linear Embedding.” Science 290 (5500): 2323–26.
Saul, Lawrence K. 2020. “A Tractable Latent Variable Model for Nonlinear Dimensionality Reduction.” Proceedings of the National Academy of Sciences 117 (27): 15403–8.
Saul, Lawrence K, Kilian Q Weinberger, Fei Sha, Jihun Ham, and Daniel D Lee. 2006. “Spectral Methods for Dimensionality Reduction.” Semi-Supervised Learning 3.
Solomon, Justin, Fernando De Goes, Gabriel Peyré, Marco Cuturi, Adrian Butscher, Andy Nguyen, Tao Du, and Leonidas Guibas. 2015. “Convolutional Wasserstein Distances: Efficient Optimal Transportation on Geometric Domains.” ACM Transactions on Graphics (ToG) 34 (4): 1–11.
Tenenbaum, Joshua B, Vin de Silva, and John C Langford. 2000. “A Global Geometric Framework for Nonlinear Dimensionality Reduction.” Science 290 (5500): 2319–23.
Von Luxburg, Ulrike, Mikhail Belkin, and Olivier Bousquet. 2008. “Consistency of Spectral Clustering.” The Annals of Statistics, 555–86.
Wang, Yifei, Yisen Wang, Jiansheng Yang, and Zhouchen Lin. 2021. “Dissecting the Diffusion Process in Linear Graph Convolutional Networks.” Advances in Neural Information Processing Systems 34: 5758–69.
Wu, Felix, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. 2019. “Simplifying Graph Convolutional Networks.” In International Conference on Machine Learning, 6861–71. PMLR.