Lightweight, interactive QSAR importance plots

dataviz
cheminformatics
A self-contained visualization of atomic contributions to models
Author

Akshay Balsubramani

Introduction

I’ve often run into situations in small-molecule drug discovery in which chemists want to visualize a dataset of chemical structures. Often, this is in the context of some learned embedding space, and sometimes even in the context of a “QSAR” (Quantitative Structure-Activity Relationship) model which predicts the response of each structure in some context (e.g. its efficacy as a drug in vivo, or in an experimental validation platform). QSAR models can further isolate atoms of interest using an atomic importance plot, which shows the contribution of each atom to the model’s predictions.

A static scatterplot is a typical way to organize an embedding, but it can be unwieldy to visualize this amount of heterogeneous information in a single static plot. Many thousands of structures typically merit visualization at once, and each of them is represented using a chemical structure diagram. In practice, this amount of information is successfully conveyed via an interactive scatterplot, which is easily rendered, as we have previously discussed.

Such a scatterplot provides a way to visualize a data-driven learned chemical space, and interactively see the structures in it. This post extends that visualization in two ways:

  • We visualize the atomic contributions to QSAR model predictions, for each structure; so each chemical structure diagram contains atom-by-atom contributions to the model’s prediction. These can be calculated in a black-box manner with standard RDKit functionality we demonstrate.
  • The plot is made in self-contained HTML, without requiring a Python environment or any code. HTML is a universal standard, so the files can be opened in any browser; we take advantage of a couple of modern wrinkles in the HTML standard, exploited by the wonderful library Bokeh.
Exploring chemical space amounts to searching over an embedded space of chemical structures. (Source.)

Like other posts of this kind that I’ve written, the workflow to interactively render data will be structured in two parts:

  • Preprocessing: Given a dataset of chemicals, prepares a dataframe that’s ready to be viewed by a front-end. This includes loading (in this case, training for demonstration purposes) a QSAR model.
  • Interactive presentation: Given a dataframe, calculate the model’s predictions on each structure and their atomic contributions, and view the results interactively in a browser.

As this involves some cheminformatics-specific code and concepts (e.g. chemical structure diagrams, atomic contributions), we start with a warmup section on how to render a generic HTML scatterplot with interactive tooltips. Then, we switch to chemical structure data, preprocessing and presenting it in a self-contained HTML plot.

Warmup: self-contained interactive plots

It’s very useful to visualize interactive scatterplots with hover-over tooltips, whether or not they are displaying chemical structure data.

The metadata passed in can drive the scatterplot in several ways, including color and legend driven by columns of the dataframe. The tooltip itself is a fully customizable html div, which is crucial to depict images, especially well-defined vector-based images like chemical structures.

There are many ways to do this, all of which bundle in some code in the HTML to make the plot interactive. Packages like plotly and Bokeh are great for this in principle, and produce nice-looking standardized plots. But plotting custom vector graphics (like chemical structures) must be done with more advanced HTML div elements, which aren’t always rendered correctly in all packages. The pipeline we give here, relying on Bokeh, does this easily. (Plotly, otherwise a good alternative as I’ve written about elsewhere, is not as good for this specific use case.)

Below we implement the common example of a scatterplot with its color encoded as a continuous or discrete signal. For demonstration purposes, we also print the value of this signal in the tooltip.

Assemble dataframe

As I write about elsewhere, single-cell genomics is a vibrant source of rich data sets that need to be visualized by scatterplot.

Following the example of that earlier post, we use single-cell gene expression data from the GTEx consortium, a large worldwide effort profiling gene expression across tissues (Eraslan et al. 2022). For completeness, the dataset is downloaded from here.

In the earlier post, we resampled the dataset down to 30000 cells to make it more tractable; we’ll load this dataset and sample it down further for display purposes.

CODE
import scanpy as sc

path_to_file = '../GTEx_8_snRNAseq_atlas_30k.h5ad'

adata = sc.read(path_to_file)
sc.pp.sample(adata, n=3000, rng=0)
df_to_visualize = adata.obs

The desired plot should look something like this:

CODE
sc.pl.umap(adata, color=['Broad cell type'])

The color is easiest to pass as a separate column of hex values in the data frame. This takes care of continuous and discrete colors on the same footing, as long as some preprocessing is used to compute the hex values from the desired color map. (For more on this, see this other post.)

CODE
import numpy as np, scipy.stats
import matplotlib.colors

def values_to_hex_colors(
    values, 
    colormap=None
):
    """
    Convert a list of values to hex colors using either a continuous colormap or discrete color list.
    
    Parameters:
    -----------
    values : list or array-like
        List of values to convert to colors
    colormap : list
        List of colors (discrete coloring) or list of (color, value) pairs (continuous coloring)
    
    Returns:
    --------
    list
        List of hex color strings, one for each input value
    """
    values = np.array(values)
    hex_colors = []
    if colormap is None or not isinstance(colormap, list):
        return []
    if isinstance(colormap[0], str):
        # Discrete coloring
        unique_vals = np.unique(values)
        if len(unique_vals) > len(colormap):
            raise ValueError(f"Number of unique values ({len(unique_vals)}) exceeds number of colors ({len(colormap)})")
        # Create mapping from values to color indices
        val_to_idx = {val: idx for idx, val in enumerate(unique_vals)}
        for val in values:
            color = colormap[val_to_idx[val]]
            # Convert color to hex if it's not already
            if not isinstance(color, str) or not color.startswith('#'):
                hex_color = matplotlib.colors.to_hex(color)
            else:
                hex_color = color
            hex_colors.append(hex_color)
    elif isinstance(colormap[0], tuple):
        # Continuous coloring; Normalize values to [0, 1] using rank
        q_values = scipy.stats.rankdata(values)/len(values)
        cmap = matplotlib.colors.LinearSegmentedColormap.from_list("custom_colormap", colormap)
        hex_colors = [matplotlib.colors.rgb2hex(cmap(val)) for val in q_values]
    return hex_colors

In this case, we can get the color values from the anndata object itself. We can modify the dataframe we are visualizing to add the color values from here.

CODE
adata_cmap = list(adata.uns['Broad cell type_colors'])
df_to_visualize['color'] = values_to_hex_colors(adata.obs['Broad cell type'], colormap=adata_cmap)

The x, y, and signal columns can be similarly filled in. We’ll get the name of each cell from the index of the dataframe.

CODE
df_to_visualize['x'], df_to_visualize['y'] = adata.obsm['X_umap'][:, 0], adata.obsm['X_umap'][:, 1]
df_to_visualize['name'] = df_to_visualize.index.astype(str)
df_to_visualize['signal'] = adata.obs['Broad cell type']
CODE
import matplotlib.pyplot as plt
import bokeh.plotting, bokeh.models

def render_html_scatterplot(
    df, 
    circ_line_width=0.1, pt_size=5, 
    color_col="color", signal_col="signal", name_col="name", 
    title='Scatterplot', output_html='interactive_scatterplot.html'
):
    """
    Renders a scatterplot of data using Bokeh, as passed in dataframe df. 
    Uses the `viridis` colormap for a continuous color signal. 

    Parameters:
    df (pd.DataFrame): DataFrame with columns ['x', 'y', 'signal']
    output_html (str): Filename for the output HTML file

    Returns:
    None
    """
    df[name_col] = df.index.astype(str)
    # Prepare data source
    source = bokeh.models.ColumnDataSource(df)
    p = bokeh.plotting.figure(
        tools='pan,box_zoom,reset,hover',
        title=title, 
        width=900, 
        height=600
    )
    # Add circle glyphs with color
    p.scatter('x', 'y', size=pt_size, line_width=circ_line_width, source=source, fill_alpha=0.6, fill_color=color_col)
    p.toolbar.logo = None
    # p.background_fill_color = "black"
    hover = p.select_one(bokeh.models.HoverTool)
    hover.tooltips = f"""
    <div>
        <div><span style="font-size: 12px;"><b>Name:</b> @{name_col}</span></div>
        <div><span style="font-size: 12px;"><b>Signal:</b> @{signal_col} </span></div>
        <br>
    </div>
    """
    bokeh.plotting.output_file(output_html)
    bokeh.plotting.save(p)

Finally rendering the scatterplot in a self-contained HTML file is straightforward, and saves the desired plot to a static file that can be opened in any browser.

CODE
render_html_scatterplot(
    df_to_visualize, 
    output_html='interactive_scatterplot_GTEx.html',
    color_col='color',
    signal_col='signal',
    name_col='name',
    title='UMAP of GTEx cells'
)

A workflow for self-contained interactive atomic importance plots

This is a good start! But visualizing atom-by-atom contributions to a QSAR model in chemistry requires more than this:

  • Visualizing chemical structures as tooltips, to be displayed only when hovered upon.
  • Visualizing the atomic contributions overlaid on the chemical structures in some intelligible way.

We show how to do these below. But first, compile appropriate data and prediction models to demonstrate these tools.

Embedding and preprocessing

First, we need to embed a given dataset of chemical structures (SMILES strings), and load/train the desired prediction model.

Embedding is a common task in cheminformatics, which we have discussed in a previous post. Following that post, we will work with a combined dataset of:

This dataset constitutes >5,000 chemicals.

CODE
import pandas as pd, time, numpy as np
from rdkit import Chem, DataStructs
from rdkit.Chem import AllChem, Descriptors, Descriptors3D, Draw, rdMolDescriptors, Draw, PandasTools
from rdkit.Chem.Draw import IPythonConsole
import scanpy as sc, anndata


fda_fname = 'fda_zinc20.txt'
fda_url = 'https://zinc20.docking.org/substances/subsets/fda.txt:zinc_id+smiles+preferred_name+mwt+logp+rb?count=all'
fda_molecules = pd.read_csv(fda_url, header=None, index_col=0, sep='\t')
fda_molecules['dataset'] = 'FDA'

worldnotfda_fname = 'world-not-fda_zinc20.txt'
worldnotfda_url = 'https://zinc20.docking.org/substances/subsets/world-not-fda.txt:zinc_id+smiles+preferred_name+mwt+logp+rb?count=all'
worldnotfda_molecules = pd.read_csv(worldnotfda_url, header=None, index_col=0, sep='\t')
worldnotfda_molecules['dataset'] = 'world-not-FDA'

all_chems = pd.concat([fda_molecules, worldnotfda_molecules])
all_chems.columns = ['SMILES', 'Preferred name', 'Molecular weight', 'Log P', 'Rotatable bonds', 'dataset']

Calculate feature fingerprints for the data

CODE
from rdkit.Chem.Draw import SimilarityMaps

import io
from io import BytesIO
from functools import partial

itime = time.time()
fp_func = partial(SimilarityMaps.GetMorganFingerprint, nBits=2048, radius=3)
feature_mat = np.array([np.array(fp_func(Chem.MolFromSmiles(x))) for x in all_chems['SMILES']])
print("Data featurized. Time: {}".format(time.time() - itime))
CODE
# Calculating some chemical descriptors using RDKit.

metadata_df = pd.DataFrame(data=feature_mat, index=all_chems.index)

metadata_df = all_chems.copy()  #metadata_df.join(all_chems)
metadata_df.index.name = 'ZINC_ID'



anndata_all = anndata.AnnData(X=feature_mat, obs=metadata_df)
anndata_all.write_h5ad('fda_worldnotfda_2048bits.h5ad')
/var/folders/5b/ps6ymxr90tj0jglr7hvc98zm0000gn/T/ipykernel_66565/1626189907.py:10: FutureWarning: X.dtype being converted to np.float32 from int64. In the next version of anndata (0.9) conversion will not be automatic. Pass dtype explicitly to avoid this warning. Pass `AnnData(X, dtype=X.dtype, ...)` to get the future behavour.
  anndata_all = anndata.AnnData(X=feature_mat, obs=metadata_df)
CODE
anndata_all = anndata.read_h5ad('fda_worldnotfda_2048bits.h5ad')

Calculate neighborhoods in the embedding space

CODE
itime = time.time()
# Do PCA for denoising and dimensionality reduction
sc.pp.pca(anndata_all, n_comps=10)
print("PCA computed. Time: {}".format(time.time() - itime))

# Compute neighborhood graph in PCA space
sc.pp.neighbors(anndata_all)
print("Neighbors computed. Time: {}".format(time.time() - itime))

# Compute UMAP using neighborhood graph
sc.tl.umap(anndata_all)
print("UMAP calculated. Time: {}".format(time.time() - itime))

sc.pl.umap(anndata_all, color='Molecular weight') #, s=4)

anndata_all.obs['x'] = anndata_all.obsm['X_umap'][:, 0]
anndata_all.obs['y'] = anndata_all.obsm['X_umap'][:, 1]

#anndata_all.write('approved_drugs.h5')
#print("Data written. Time: {}".format(time.time() - itime))
PCA computed. Time: 1.0350549221038818
OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.
Neighbors computed. Time: 5.531585931777954
UMAP calculated. Time: 14.335879802703857

Train a model and make predictions

We train a model to predict log-P (a measure of lipophilicity, namely the octanol-water partition coefficient) from the chemical structures.

In practical situations, we could load a pre-trained model as well (example).

CODE
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
from sklearn.metrics import root_mean_squared_error

in_smiles = list(anndata_all.obs['SMILES'])
in_signal = list(anndata_all.obs['Log P'])

y_data = np.array(in_signal)
X_data = anndata_all.X

# Assuming X is your feature matrix and y is your target vector
X_train, X_test, y_train, y_test = train_test_split(X_data, y_data, test_size=0.2, random_state=42)

model = RandomForestRegressor()
model.fit(X_train, y_train)

y_pred = model.predict(X_test)
accuracy = root_mean_squared_error(y_test, y_pred)
print(f"RMSE: {accuracy}")
RMSE: 0.8165706776036056

Make predictions on the data

Now that we have a model, we can make predictions on the data. For display purposes, we will predict on all the data, including the training data.

CODE
import scipy.stats
import matplotlib.colors, matplotlib.pyplot as plt, base64

tree_preds = []
for tree in range(model.n_estimators):
    tree_preds.append(model.estimators_[tree].predict(X_data))
tree_preds = np.array(tree_preds)

anndata_all.obs["predictions"] = tree_preds.mean(axis=0)     # == model.predict(X_data)
anndata_all.obs["uncertainty"] = tree_preds.std(axis=0)
anndata_all.obs["q_predictions"] = scipy.stats.rankdata(anndata_all.obs["predictions"])/len(anndata_all.obs["predictions"])

# adta_all_mod.obs["q_predictions"] is between 0 and 1. 
# Replace each of these numerical values by corresponding hex viridis colors.

anndata_all.obs["colormapped_predictions"] = anndata_all.obs["q_predictions"].apply(lambda x: matplotlib.colors.rgb2hex(plt.cm.viridis(x)))

Plot atomic importances in an interactive scatterplot

There is a very simple conceptual way to calculate the importance of any atom to a prediction: if we remove the atom from the molecule but leave it otherwise equivalent, how much does the prediction change?

This is very efficient to implement using the circular fingerprint features common in cheminformatics. RDKit’s Greg Landrum has some comprehensive explanations on his blog, in addition to the published whitepaper.

CODE
def get_pred(fp, pred_function):
    fp = np.array([list(fp)])
    return pred_function(fp)[0]

def render_molecule_scatterplot(
    df, fp_func, smiles_col="SMILES", name_col="Preferred name", 
    color_col="color", legend_col="cluster", circ_line_width=0.1, pt_size=5, title='Molecule scatterplot',  
    output_html='interactive_scatterplot.html', pred_model=None, size_tuple=(250, 250)
):
    """
    Renders a scatterplot of chemical structures using Bokeh, with points colored according to the 'color' column.

    Parameters:
    df (pd.DataFrame): DataFrame with columns ['SMILES', 'x', 'y', 'name', 'predictions', color_col]
    output_html (str): Filename for the output HTML file

    Returns:
    None
    """
    # Generate images of molecules and encode them as base64
    images = []
    for i in range(len(df[smiles_col])):
        smiles = df[smiles_col][i]
        mol = Chem.MolFromSmiles(smiles)
        if mol is not None:
            img = Draw.MolToImage(mol, size=size_tuple)
            buffered = BytesIO()
            img.save(buffered, format="PNG")
            img_str = base64.b64encode(buffered.getvalue()).decode()
            
            # Query prediction model to generate "similarity map" of atom contributions
            d = Draw.MolDraw2DCairo(*size_tuple)
            _, maxWeight = SimilarityMaps.GetSimilarityMapForModel(
                mol,
                fp_func,
                lambda x : get_pred(x, pred_model.predict), colorMap='coolwarm', 
                draw2d=d
            )
            d.FinishDrawing()
            img_str = base64.b64encode(d.GetDrawingText()).decode()

            img_uri = f'data:image/png;base64,{img_str}'
            images.append(img_uri)
        else:
            images.append(None)

    df['img'] = images
    df['name'] = list(df[name_col])
    df['log_p'] = list(df['Log P'])


    # Prepare data source
    source = bokeh.models.ColumnDataSource(df)

    # Create a Bokeh figure
    p = bokeh.plotting.figure(
        tools='pan,box_zoom,reset,hover',
        title=title, 
        width=900, 
        height=600
    )

    # Add circle glyphs with color
    if legend_col is not None:
        p.scatter('x', 'y', size=pt_size, line_width=circ_line_width, source=source, fill_alpha=0.6, fill_color=color_col, legend_field=legend_col)
    else:
        p.scatter('x', 'y', size=pt_size, line_width=circ_line_width, source=source, fill_alpha=0.6, fill_color=color_col)
    p.toolbar.logo = None
    # p.background_fill_color = "black"

    # Configure hover tool
    hover = p.select_one(bokeh.models.HoverTool)
    hover.tooltips = """
    <div>
        <div><img src="@img" alt="Molecule image" style="width:300px;height:300px;"></div>
        <div><span style="font-size: 12px;"><b>Name:</b> @name</span></div>
        <div><span style="font-size: 12px;"><b>Prediction:</b> @predictions +/- @uncertainty </span></div>
        <div><span style="font-size: 12px;"><b>Measured log p:</b> @log_p </span></div>
        <br>
    </div>
    """
    if legend_col is not None:
        p.legend.title = legend_col
        p.legend.location = 'center'
        p.legend.background_fill_alpha = 0.5
        p.legend.click_policy="hide"

        # **Set the legend to have two columns**
        p.legend.orientation = 'vertical'
        #p.legend.label_width = 100
        #p.legend.label_height = 20
        #p.legend.glyph_height = 20
        #p.legend.spacing = 5
        p.legend.ncols = 2  # Set number of columns to 2

        p.add_layout(p.legend[0], 'right')
    
    bokeh.plotting.output_file(output_html)
    bokeh.plotting.save(p)

Render self-contained HTML plot

Caution: This will generate a large HTML file, as it contains a lot of data, primarily the rendered chemical structures and atomic contribution info for each structure. Budget ~5MB per 100 structures.

This also means it may take a while as it’s not optimized in any way. Budget ~4-10 structures per second.

CODE
df_to_visualize = anndata_all.obs[anndata_all.obs['dataset'] == 'FDA'].copy()
df_to_visualize = df_to_visualize[df_to_visualize['Molecular weight'] > 600]
df_to_visualize
SMILES Preferred name Molecular weight Log P Rotatable bonds dataset x y predictions uncertainty q_predictions colormapped_predictions
ZINC_ID
ZINC000150338708 COc1cc2c(cc1O)CCN[C@]21CS[C@@H]2c3c(OC(C)=O)c(... ecteinascidin 761.850 3.413 3 FDA 7.935522 5.625659 3.41814 1.314929e+00 0.706082 #46c06f
ZINC000003830961 CNC(=O)c1c(I)c(NC(C)=O)c(I)c(C(=O)O)c1I iotalamic acid 613.915 2.517 3 FDA 17.930548 13.269096 1.81739 1.320284e+00 0.407081 #297a8e
ZINC000085534336 CC[C@H]1OC(=O)[C@H](C)[C@@H](O[C@H]2C[C@@](C)(... erythromycin 733.937 1.786 7 FDA 16.405384 -3.409683 1.78600 1.083705e-15 0.402338 #2a788e
ZINC000238809664 COc1ccc(C[C@@H]2c3cc(OC)c(OC)cc3CC[N@+]2(C)CCC... ZINC238809664 929.161 8.066 24 FDA 7.774220 3.859546 8.06600 3.683532e-15 0.990513 #f8e621
ZINC000169621230 CO[C@H]1C[C@H]2CC[C@H](C)[C@](O)(O2)C(=O)C(=O)... ZINC169621230 958.240 6.197 9 FDA -10.429771 0.983236 6.18320 3.592986e-01 0.970947 #ece51b
... ... ... ... ... ... ... ... ... ... ... ... ...
ZINC000085540215 CC(=O)N(C[C@@H](O)CO)c1c(I)c(C(=O)NCCO)c(I)c(C... ioxilan 791.115 -0.988 11 FDA 20.098238 17.253805 -1.01995 1.392668e-01 0.079028 #481d6f
ZINC000028108825 O=C(O)CN(CCN(CC(=O)O)C[C@H](CO[P@](=O)(O)OC1CC... gadofosveset 737.696 1.747 23 FDA 6.067957 3.725043 1.78289 2.850435e-01 0.400728 #2a788e
ZINC000261527196 CCN(CC)CCS(=O)(=O)[C@@H]1CCN2C(=O)c3coc(n3)CC(... ZINC261527196 690.860 2.269 7 FDA 20.912455 29.761009 2.26900 3.552714e-15 0.494325 #218f8d
ZINC000169621231 CO[C@H]1C[C@H]2CC[C@H](C)[C@](O)(O2)C(=O)C(=O)... ZINC169621231 958.240 6.197 9 FDA -10.473525 1.025250 6.18320 3.592986e-01 0.970947 #ece51b
ZINC000253387843 C[C@@H]1OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@... ZINC253387843 924.091 0.712 3 FDA 29.790573 17.416447 0.64261 2.224000e-01 0.213705 #3f4788

141 rows × 12 columns

CODE
render_molecule_scatterplot(
    df_to_visualize, fp_func, 
    smiles_col="SMILES", 
    name_col="Preferred name", 
    color_col="colormapped_predictions", 
    pred_model=model, 
    pt_size=10, 
    output_html=f'FDA_scatter_logp_heavy.html', 
    legend_col=None, 
    title=f'Log-p predictions on FDA-approved drugs (MW > 500)', 
    size_tuple=(250, 250)
)

The resulting file readily displays in any browser, and can be shared with collaborators or viewed offline. It shows atomic importances for each structure in determining the log-P prediction. These sanity-check nicely: the lipophilic portions of the molecules are highlighted in red as contributing positively towards higher log-P. Conversely, the hydrophilic portions are in blue, as those atoms contribute negatively towards log-P.

References

Eraslan, Gökcen, Eugene Drokhlyansky, Shankara Anand, Evgenij Fiskin, Ayshwarya Subramanian, Michal Slyper, Jiali Wang, et al. 2022. “Single-Nucleus Cross-Tissue Molecular Reference Maps Toward Understanding Disease Gene Function.” Science 376 (6594): eabl4290.

Reuse

CC BY 4.0